An iterative search method is proposed for obtaining orientation
maps inside polycrystals from three-dimensional X-ray diffraction (3DXRD) data. In each step, detector pixel intensities are calculated by a forward model based on the current estimate of the orientation map. The pixel at which the xperimentally measured value most exceeds the simulated one is identified. This difference can only be reduced by changing the current estimate at a location from a relatively small subset of all possible locations in the estimate and, at each such location, an increase at the identified pixel can only be achieved by changing the orientation in only a few possible ways. The method selects the location/orientation pair indicated as best by a function that measures data consistency combined with prior information on orientation maps. The superiority of the method to a previously published forward projection Monte Carlo optimization is demonstrated on simulated data.
«
An iterative search method is proposed for obtaining orientation
maps inside polycrystals from three-dimensional X-ray diffraction (3DXRD) data. In each step, detector pixel intensities are calculated by a forward model based on the current estimate of the orientation map. The pixel at which the xperimentally measured value most exceeds the simulated one is identified. This difference can only be reduced by changing the current estimate at a location from a relatively small subset of all possib...
»