Benutzer: Gast  Login
Titel:

Discrete tomography of mathematcal qquasicrystals: A primer

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Baake, C.; P. Gritzmann, C. Huck, B. Langfeld and K. Lord
Abstract:
This text is a report on work progress. We introduce the class of cyclotomic model sets (mathematical quasicrystals) Λ⊂Z[ξn], where Z[ξn] is the ring of integers in the nth cyclotomic field Q(ξn), and discuss the corresponding decomposition, consistency and reconstruction problems of the discrete tomography of these sets. Our solution of the so-called decomposition problem also applies to the case of the square lattice Z2=Z[ξ4], which corresponds to the classical setting of discrete tomography.
Stichworte:
Consistency problemcyclomatic model setdecomposition problemdiscrete tomographyreconstruction problem
Zeitschriftentitel:
Electronic Notes in Discrete Mathematics
Jahr:
2005
Heft / Issue:
20
Seitenangaben Beitrag:
179-191
Reviewed:
ja
Sprache:
en
TUM Einrichtung:
Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik
 BibTeX