Increased PDGFR-beta and VEGFR-2 protein levels are associated with resistance to platinum-based chemotherapy and adverse outcome of ovarian cancer patients.
Despite frequent initial response rates of epithelial ovarian cancer to platinum-based chemotherapy the majority of patients develop drug resistance. Our aim was to evaluate differential expression of signaling-pathway proteins in platinum-sensitive versus platinum-resistant primary epithelial ovarian cancer specimens to identify predictive biomarkers for treatment response. 192 patients were studied comprising of independent training (n = 89) and validation (n = 103) cohorts. Full-length proteins were extracted from paraffin-embedded samples including multiple regions per tumor to account for intratumoral heterogeneity. Quantitative reverse-phase-protein-arrays were used to analyze protein and phospho-protein levels of 41 signaling molecules including growth-factor receptors, AKT and MAPK signaling pathways as well as angiogenesis and cell-adhesion. Platinum-resistant ovarian cancers (56/192) demonstrated significantly higher intratumoral levels of the angiogenesis-associated growth-factor receptors PDGFR-beta and VEGFR2 compared to platinum-sensitive tumors. In addition, patients with high PDGFR-beta expression had significantly shorter overall and progression-free survival (HR 3.6 and 2.4; p < 0.001). The prognostic value of PDGFR-beta and VEGFR2 was confirmed in publicly available microarray-datasets. High intratumoral levels of the angiogenesis-related growth-factor receptors PDGFR-beta and VEGFR2 might serve as novel predictive biomarkers to identify primary resistance to platinum-based chemotherapy. Those ovarian cancer patients might particularly benefit from additional anti-vascular therapy including anti-VEGF antibody or receptor tyrosine-kinase-inhibitor therapy.