Over the last decades, quantum cascade lasers (QCLs) have become established sources of mid-infrared and terahertz light. For their anticipated applications, e.g., in spectroscopy, their dynamical behavior is particularly interesting. Numerical simulations constitute an essential tool for investigating the QCL dynamics but exhibit considerable computational workload. In order to accelerate the simulations and thereby aid the design process of QCLs, we present efficient parallel implementations of an established numerical method using OpenMP. Performance measurements on a 28-core CPU confirm their efficiency.
«
Over the last decades, quantum cascade lasers (QCLs) have become established sources of mid-infrared and terahertz light. For their anticipated applications, e.g., in spectroscopy, their dynamical behavior is particularly interesting. Numerical simulations constitute an essential tool for investigating the QCL dynamics but exhibit considerable computational workload. In order to accelerate the simulations and thereby aid the design process of QCLs, we present efficient parallel implementations o...
»