Benutzer: Gast  Login
Dokumenttyp:
Masterarbeit
Autor(en):
Çeter, Server
Titel:
Automated BIM Model Annotation via Graph Neural Networks: Bridging the Gap Between Design and Documentation
Abstract:
The production of annotated technical drawing in the Architecture, Engineering, and Construction (AEC) industry requires much work, necessitating the adoption of tools that can limit the workload especially with the advent of artificial intelligence (AI). This thesis sought to revolutionize architectural documentation by using Graph Neural Net-works (GNNs) as a step toward automating this process. The overarching goal is to automatically generate annotations for Building Information Modeling (BI...     »
Stichworte:
LOCenter; BIM;
Fachgebiet:
ALL Allgemeines
Aufgabensteller:
Du, C.; Nousias, S.; Borrmann, A.
Jahr:
2024
Jahr / Monat:
2024-05
Monat:
May
Hochschule / Universität:
Technische Universität München
 BibTeX