To understand sensory representation in cortex, it is crucial to identify its constituent cellular components based on cell-type-specific criteria. With the identification of cell types, an important question can be addressed: to what degree does the cellular properties of neurons depend on cortical location? We tested this question using pyramidal neurons in layer 5 (L5) because of their role in providing major cortical output to subcortical targets. Recently developed transgenic mice with cell-type-specific enhanced green fluorescent protein labeling of neuronal subtypes allow reliable identification of 2 cortical cell types in L5 throughout the entire neocortex. A comprehensive investigation of anatomical and functional properties of these 2 cell types in visual and somatosensory cortex demonstrates that, with important exceptions, most properties appear to be cell-type-specific rather than dependent on cortical area. This result suggests that although cortical output neurons share a basic layout throughout the sensory cortex, fine differences in properties are tuned to the cortical area in which neurons reside.
«
To understand sensory representation in cortex, it is crucial to identify its constituent cellular components based on cell-type-specific criteria. With the identification of cell types, an important question can be addressed: to what degree does the cellular properties of neurons depend on cortical location? We tested this question using pyramidal neurons in layer 5 (L5) because of their role in providing major cortical output to subcortical targets. Recently developed transgenic mice with cell...
»