Hyperthermia treatment in the temperature range 39-43A degrees C can influence the adaptive and natural immune system in addition to the direct toxic effect of temperatures above 41A degrees C on cells. The type of cell destruction (necrosis or apoptosis) plays an important role in whether a pro-inflammatory or anti-inflammatory immune response is triggered by hyperthermia. In addition danger signals, such as high mobility group B1 protein, adenosine-5-triphosphate (ATP) and heat-shock protein, which are released from necrotic tumor cells, can stimulate cells of the natural immune system and therefore assist the anti-tumor response. In this review article the various molecular and immunological mechanisms which are regulated by hyperthermia treatment will be described in detail.
«
Hyperthermia treatment in the temperature range 39-43A degrees C can influence the adaptive and natural immune system in addition to the direct toxic effect of temperatures above 41A degrees C on cells. The type of cell destruction (necrosis or apoptosis) plays an important role in whether a pro-inflammatory or anti-inflammatory immune response is triggered by hyperthermia. In addition danger signals, such as high mobility group B1 protein, adenosine-5-triphosphate (ATP) and heat-shock protein,...
»