Benutzer: Gast  Login
Titel:

Generative Machine-Learning Methods to Predict the Wake of a Distributed Roughness Patch in a Hypersonic Boundary-Layer Flow

Dokumenttyp:
Buchbeitrag
Autor(en):
Ulrich, Friedrich; Stemmer, Christian
Abstract:
This study presents a UNet-based conditional generative adversarial network (cGAN) to predict the flow field in the wake of random roughness patches. The model successfully captured the characteristic cross-flow-like vortex, but its fidelity needs to be improved for detailed transition calculations. However, the model proved effective as a screening tool for identifying roughness patches likely to induce or suppress cross-flow-like vortices. By estimating vortex size and location, the model aids...     »
Stichworte:
Distributed roughness; Generative machine learning; Hypersonics
Dewey-Dezimalklassifikation:
620 Ingenieurwissenschaften
Buchtitel:
IUTAM Bookseries
Band / Teilband / Volume:
44
Verlag / Institution:
Springer Nature Singapore
Jahr:
2026
Seiten/Umfang:
151-157
Nachgewiesen in:
Scopus
Print-ISBN:
97898196982889789819698295
Sprache:
en
DOI:
doi:10.1007/978-981-96-9829-5_20
Hinweise:
Funding text: This research was supported by the Cusanuswerk e.V. scholarship and founds of the TUM International Graduate School of Science and Engineering (IGSSE). Further, the authors acknowledge the Gauss Centre for Supercomputing e.V. for supporting this project by providing computing time on the GCS Supercomputer SuperMUC-NG. We would also like to thank Mirza Hasovic for his support.
TUM Einrichtung:
Lehrstuhl für Aerodynamik und Strömungsmechanik
 BibTeX