Benutzer: Gast  Login
Titel:

Stochastic Surface Growth. Dissertation, LMU München

Dokumenttyp:
Graue Literatur
Autor(en):
Prähofer, Michael
Stichworte:
Kardar-Parisi-Zhang theory, Painleve II, Tracy-Widom distributions, Airy process
Abstract:
Growth phenomena constitute an important field in nonequilibrium statistical mechanics. Kardar, Parisi, and Zhang (KPZ) in 1986 proposed a continuum theory for local stochastic growth predicting scale invariance with universal exponents and limiting distributions. For a special, exactly solvable growth model (polynuclear growth - PNG) on a one-dimensional substrate (1+1 dimensional) we confirm the known scaling exponents and identify for the first time the limiting distributions of height flu...     »
Erscheinungsort:
München
Publikationsdatum:
14.10.2003
Jahr:
2003
Sprache:
en
WWW:
https://edoc.ub.uni-muenchen.de/1381/
DOI:
doi:10.5282/edoc.1381
Hinweise:
Dissertation, LMU München: Faculty of Physics
Publikationsform:
WWW
Verlag / Institution:
LMU München: Faculty of Physics
 BibTeX