Benutzer: Gast  Login
Titel:

Learning linear non-Gaussian polytree models

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Tramontano, Daniele; Monod, Anthea; Drton, Mathias
Seitenangaben Beitrag:
1960-1969
Abstract:
In the context of graphical causal discovery, we adapt the versatile framework of linear non-Gaussian acyclic models (LiNGAMs) to propose new algorithms to efficiently learn graphs that are polytrees. Our approach combines the Chow–Liu algorithm, which first learns the undirected tree structure, with novel schemes to orient the edges. The orientation schemes assess algebraic relations among moments of the data-generating distribution and are computationally inexpensive. We establish high-dimensi...     »
Dewey-Dezimalklassifikation:
510 Mathematik
Kongress- / Buchtitel:
Proceedings of Machine Learning Research
Kongress / Zusatzinformationen:
Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022)
Band / Teilband / Volume:
180
Datum der Konferenz:
1-5 August 2022
Verlag / Institution:
MLResearchPress
Publikationsdatum:
24.08.2022
Jahr:
2022
Quartal:
3. Quartal
Jahr / Monat:
2022-08
Monat:
Aug
Serien-ISSN:
2640-3498
Sprache:
en
Erscheinungsform:
WWW
WWW:
Proceedings of Machine Learning Research
Semester:
SS 22
TUM Einrichtung:
Lehrstuhl für Mathematische Statistik
Format:
Text
 BibTeX