Benutzer: Gast  Login
Titel:

Deep Learning Methods for Lung Cancer Segmentation in Whole-Slide Histopathology Images-The ACDC@LungHP Challenge 2019.

Dokumenttyp:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Review
Autor(en):
Li, Zhang; Zhang, Jiehua; Tan, Tao; Teng, Xichao; Sun, Xiaoliang; Zhao, Hong; Liu, Lihong; Xiao, Yang; Lee, Byungjae; Li, Yilong; Zhang, Qianni; Sun, Shujiao; Zheng, Yushan; Yan, Junyu; Li, Ni; Hong, Yiyu; Ko, Junsu; Jung, Hyun; Liu, Yanling; Chen, Yu-Cheng; Wang, Ching-Wei; Yurovskiy, Vladimir; Maevskikh, Pavel; Khanagha, Vahid; Jiang, Yi; Yu, Li; Liu, Zhihong; Li, Daiqiang; Schuffler, Peter J; Yu, Qifeng; Chen, Hui; Tang, Yuling; Litjens, Geert
Abstract:
Accurate segmentation of lung cancer in pathology slides is a critical step in improving patient care. We proposed the ACDC@LungHP (Automatic Cancer Detection and Classification in Whole-slide Lung Histopathology) challenge for evaluating different computer-aided diagnosis (CADs) methods on the automatic diagnosis of lung cancer. The ACDC@LungHP 2019 focused on segmentation (pixel-wise detection) of cancer tissue in whole slide imaging (WSI), using an annotated dataset of 150 training images and...     »
Zeitschriftentitel:
IEEE J Biomed Health Inform
Jahr:
2021
Band / Volume:
25
Heft / Issue:
2
Seitenangaben Beitrag:
429-440
Volltext / DOI:
doi:10.1109/JBHI.2020.3039741
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/33216724
Print-ISSN:
2168-2194
TUM Einrichtung:
Institut für Allgemeine Pathologie und Pathologische Anatomie
 BibTeX