Benutzer: Gast  Login
Titel:

Airfoil buffet aerodynamics at plunge and pitch excitation based on long short-term memory neural network prediction

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Zahn, R.; Breitsamter, C.
Abstract:
In the present study, a nonlinear system identification approach based on a long short-term memory (LSTM) neural network is applied for the prediction of transonic buffet aerodynamics. The identification approach is applied as a reduced-order modeling (ROM) technique for an efficient computation of time-varying integral quantities such as aerodynamic force and moment coefficients. Therefore, the nonlinear identification procedure as well as the generalization of the ROM are presented. The traini...     »
Stichworte:
Buffet aerodynamics; Computational fluid dynamics; Long short-term memory neural network; Nonlinear system identification; Reduced-order model
Dewey Dezimalklassifikation:
620 Ingenieurwissenschaften
Zeitschriftentitel:
CEAS Aeronautical Journal
Jahr:
2021
Nachgewiesen in:
Scopus
Sprache:
en
Volltext / DOI:
doi:10.1007/s13272-021-00550-6
Verlag / Institution:
Springer Science and Business Media LLC
E-ISSN:
1869-55821869-5590
Hinweise:
The authors gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for funding this work in the framework of the research unit FOR 2895 (Unsteady flow and interaction phenomena at high-speed stall conditions), subproject TP7, grant number BR1511/14-1. Furthermore, the authors thank the Gauss Centre for Supercomputing e.V. ( www.gauss-centre.eu ) for funding this project by providing computing licences and computing time on the GCS Supercomputer SuperMUC-NG a...     »
Publikationsdatum:
18.10.2021
TUM Einrichtung:
Lehrstuhl für Aerodynamik und Strömungsmechanik
 BibTeX