Benutzer: Gast  Login
Titel:

The Finite Cell Method with Least Squares Stabilized Nitsche Boundary Conditions

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Larsson, K.; Kollmannsberger, S.; Rank, E.; Larsson, M.
Abstract:
We apply the recently developed least squares stabilized symmetric Nitsche method for enforcement of Dirichlet boundary conditions to the finite cell method. The least squares stabilized Nitsche method in combination with finite cell stabilization leads to a symmetric positive definite stiffness matrix and relies only on elementwise stabilization, which does not lead to additional fill in. We prove a priori error estimates and bounds on the condition numbers.
Zeitschriftentitel:
Computer Methods in Applied Mechanics and Engineering
Jahr:
2022
Band / Volume:
393
Jahr / Monat:
2022-04
Quartal:
2. Quartal
Monat:
Apr
Heft / Issue:
8
Seitenangaben Beitrag:
x-x
Nachgewiesen in:
Scopus
Volltext / DOI:
doi:10.1016/j.cma.2022.114792
WWW:
http://arxiv.org/abs/2110.14225
Status:
Verlagsversion / published
 BibTeX