Benutzer: Gast  Login
Titel:

3DQ: Compact Quantized Neural Networks for Volumetric Whole Brain Segmentation

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Paschali, M.; Gasperini, S.; Roy, A. Guha; Fang, M.Y.-S.; Navab, N.
Abstract:
Model architectures have been dramatically increasing in size, improving performance at the cost of resource requirements. In this paper we propose 3DQ, a ternary quantization method, applied for the first time to 3D Fully Convolutional Neural Networks (F-CNNs), enabling 16x model compression while maintaining performance on par with full precision models. We extensively evaluate 3DQ on two datasets for the challenging task of whole brain segmentation. Additionally, we showcase our method's abil...     »
Stichworte:
MICCAI,Deep Learning,Compression,Quantization,Segmentation,Brain,Neuroimaging,published
Kongress- / Buchtitel:
Medical Image Computing and Computer Assisted Intervention - MICCAI 2019 - 22nd International Conference, Shenzhen, China, October 13-17, 2019
Jahr:
2019
 BibTeX