For measurements of unsteady flow phenomena with multi-hole pressure probes, pressure transducers are integrated in the probe near the probe tip. The application of additive manufacturing enables a wide variation in probe geometries for complex use cases. The spatial characteristics of the unsteady probe are determined by the steady state calibration in a known free-jet wind tunnel. Furthermore, the acoustic/pneumatic line-cavity system, that emerges inside the channels of the probe, is investigated in detail in the temporal calibration. In order to realize multi-hole probes with higher temporal resolution, which can be operated in harsh environments, a fiber-optic pressure sensor is developed. The measurement principle of the fiber-optic sensor is based on the Fabry-Pérot interferometer effect. The sensor is operated differentially with a pressure capillary by either pressurizing the sensor or using the surrounding static pressure as the reference pressure. Besides calibration of the sensor, comparisons with a state-of-the-art piezo-resistive pressure transducer have been performed. The focus of this work is on the reproducibility of both frequency response and amplitude.
«
For measurements of unsteady flow phenomena with multi-hole pressure probes, pressure transducers are integrated in the probe near the probe tip. The application of additive manufacturing enables a wide variation in probe geometries for complex use cases. The spatial characteristics of the unsteady probe are determined by the steady state calibration in a known free-jet wind tunnel. Furthermore, the acoustic/pneumatic line-cavity system, that emerges inside the channels of the probe, is investig...
»