Benutzer: Gast  Login
Titel:

Nonlinear identification via connected neural networks for unsteady aerodynamic analysis

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Winter, M.; Breitsamter, C.
Abstract:
n the present work, a nonlinear system identification strategy is proposed which is based on the series connection of a recurrent local linear neuro-fuzzy model (NFM) and a multilayer perceptron (MLP) neural network. The NFM with output feedback is initially used for multi-step ahead predictions, whereas the MLP neural network is a posteriori employed to perform a nonlinear quasi-static correction of the NFM's time-series response. The novel identification approach is utilized exemplarily as a r...     »
Stichworte:
Nonlinear system identification; Reduced-order modeling; Neuro-fuzzy model; Neural networks; Unsteady aerodynamics; Computational fluid dynamics
Dewey Dezimalklassifikation:
620 Ingenieurwissenschaften
Zeitschriftentitel:
Aerospace Science and Technology
Jahr:
2018
Band / Volume:
Vol. 77
Seitenangaben Beitrag:
pp. 802-818
Nachgewiesen in:
Scopus
Sprache:
en
Volltext / DOI:
doi:10.1016/j.ast.2018.03.034
WWW:
https://doi.org/10.1016/j.ast.2018.03.034
Verlag / Institution:
Elsevier Masson SAS
TUM Einrichtung:
Lehrstuhl für Aerodynamik
 BibTeX