A Monte Carlo based computational model was developed to analyze the electrical transport properties in networks of randomly arranged single wall carbon nanotubes. The CNTs are modeled as stiff sticks with a lognormal distributed length. The average stick length and diameter size are deduced from a CNT film fabricated with the spray deposition technique. Intertube junctions as well as single tubes are represented by resistances. The analyzed networks are composed of both metallic and semiconducting CNTs in a ratio of 1/3. The electrical properties are obtained with the circuit analysis and simulation tool HSPICE. The measured sheet resistances and conductivities were compared with the simulation results. The validity of the model is confirmed by the good match between the simulation and experimentally obtained results.
«