Important advances in the development of magnetic manipulation devices have been recorded over the last few years and promising experimental results have been presented. In this article we first perform a detailed analysis on one of most widely used magnetic actuators, namely a planar microcoil. Key parameters that affect the performance of the actuator are identified and our results are in accordance with measured data. Making use of these findings, a lab-on-a-chip system is proposed, that also integrates a novel electronic sensing concept for live monitoring of its activity. Possible applications of this system include highly selective bioseparation or the possibility to manipulate and assemble marked particles with great precision.
«
Important advances in the development of magnetic manipulation devices have been recorded over the last few years and promising experimental results have been presented. In this article we first perform a detailed analysis on one of most widely used magnetic actuators, namely a planar microcoil. Key parameters that affect the performance of the actuator are identified and our results are in accordance with measured data. Making use of these findings, a lab-on-a-chip system is proposed, that also...
»