User: Guest  Login
Title:

Direct prediction of genetic aberrations from pathology images in gastric cancer with swarm learning.

Document type:
Journal Article
Author(s):
Saldanha, Oliver Lester; Muti, Hannah Sophie; Grabsch, Heike I; Langer, Rupert; Dislich, Bastian; Kohlruss, Meike; Keller, Gisela; van Treeck, Marko; Hewitt, Katherine Jane; Kolbinger, Fiona R; Veldhuizen, Gregory Patrick; Boor, Peter; Foersch, Sebastian; Truhn, Daniel; Kather, Jakob Nikolas
Abstract:
BACKGROUND: Computational pathology uses deep learning (DL) to extract biomarkers from routine pathology slides. Large multicentric datasets improve performance, but such datasets are scarce for gastric cancer. This limitation could be overcome by Swarm Learning (SL). METHODS: Here, we report the results of a multicentric retrospective study of SL for prediction of molecular biomarkers in gastric cancer. We collected tissue samples with known microsatellite instability (MSI) and Epstein-Barr Vir...     »
Journal title abbreviation:
Gastric Cancer
Year:
2023
Journal volume:
26
Journal issue:
2
Pages contribution:
264-274
Fulltext / DOI:
doi:10.1007/s10120-022-01347-0
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/36264524
Print-ISSN:
1436-3291
TUM Institution:
1580; 1622; 1708; Institut für Allgemeine Pathologie und Pathologische Anatomie (Dr. Mogler komm.)
 BibTeX