User: Guest  Login

Title:

Consistent and symmetry preserving data-driven interface reconstruction for the level-set method

Document type:
Zeitschriftenaufsatz
Author(s):
Buhendwa, Aaron B.; Bezgin, Deniz A.; Adams, Nikolaus A.
Abstract:
Recently, machine learning has been used to substitute parts of conventional computational fluid dynamics (CFD) solvers, e.g., the cell face reconstruction in the finite-volume method or the curvature computation in the Volume-of-Fluid (VOF) method. The latter showed improvements in terms of accuracy for coarsely resolved interfaces, however at the expense of convergence and symmetry. In this work, a hybrid data-driven approach is proposed, addressing the aforementioned shortcomings. We focus on...     »
Keywords:
Data-driven interface reconstruction; Level-set method; Two-phase flows; Machine learning
Dewey Decimal Classification:
620 Ingenieurwissenschaften
Journal title:
Journal of Computational Physics
Year:
2022
Journal volume:
457
Pages contribution:
111049
Covered by:
Scopus
Language:
en
Fulltext / DOI:
doi:10.1016/j.jcp.2022.111049
Publisher:
Elsevier BV
E-ISSN:
0021-9991
Submitted:
23.04.2021
Accepted:
04.02.2022
Date of publication:
01.05.2022
TUM Institution:
Lehrstuhl für Aerodynamik und Strömungsmechanik
 BibTeX