Benutzer: Gast  Login
Titel:

Identifiability of homoscedastic linear structural equation models using algebraic matroids

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Drton, Mathias; Hollering, Benjamin; Wu, Jun
Abstract:
We consider structural equation models (SEMs), in which every variable is a function of a subset of the other variables and a stochastic error. Each such SEM is naturally associated with a directed graph describing the relationships between variables. When the errors are homoscedastic, recent work has proposed methods for inferring the graph from observational data under the assumption that the graph is acyclic (i.e., the SEM is recursive). In this work, we study the setting of homoscedastic err...     »
Stichworte:
Algebraic matroids; Structural equation models; Directed graph; Identifiability; Homoscedastic errors
Dewey Dezimalklassifikation:
510 Mathematik
Zeitschriftentitel:
Advances in Applied Mathematics
Jahr:
2025
Band / Volume:
163
Jahr / Monat:
2025-02
Quartal:
1. Quartal
Monat:
Feb
Seitenangaben Beitrag:
102794
Sprache:
en
Volltext / DOI:
doi:10.1016/j.aam.2024.102794
WWW:
Advances in Applied Mathematics
Verlag / Institution:
Elsevier BV
E-ISSN:
0196-8858
Hinweise:
Available online 15 October 2024
Angenommen (von Zeitschrift):
09.10.2024
Publikationsdatum:
01.02.2025
Semester:
WS 24-25
TUM Einrichtung:
Lehrstuhl für Mathematische Statistik
Format:
Text
 BibTeX