Benutzer: Gast  Login
Dokumenttyp:
Masterarbeit
Autor(en):
Schmidt, Jakob
Titel:
Earnings Forecast via Machine Learning and Estimation of the Implied Cost of Capital
Abstract:
We apply a selection of machine learning models to the task of forecasting future firm earnings. While estimates from financial analysts present the highest forecast accuracy, machine learning models are superior in terms of forecast bias and earnings response coefficient. We find models based on regression trees to perform best among the machine learning methods. The earnings forecasts are then used to estimate the implied cost of capital (ICC) which is the internal rate of return that equates...     »
Aufgabensteller:
Prof. Dr. Rudi Zagst & Prof. Dr. Christoph Kaserer
Betreuer:
Prof. Dr. Rudi Zagst & Prof. Dr. Christoph Kaserer
Jahr:
2022
Hochschule / Universität:
Technische Universität München
Bearbeitungsbeginn:
15.09.2022
Bearbeitungsende:
10.03.2023
 BibTeX