In this paper, we propose a novel interpretation method tailored to histological Whole Slide Image (WSI) processing. A Deep Neural Network (DNN), inspired by Bag-of-Features models is equipped with a Multiple Instance Learning (MIL) branch and trained with weak supervision for WSI classification. MIL avoids label ambiguity and enhances our model's expressive power without guiding its attention. We utilize a fine-grained logit heatmap of the models activations to interpret its decision-making process. The proposed method is quantitatively and qualitatively evaluated on two challenging histology datasets, outperforming a variety of baselines. In addition, two expert pathologists were consulted regarding the interpretability provided by our method and acknowledged its potential for integration into several clinical applications.
«
In this paper, we propose a novel interpretation method tailored to histological Whole Slide Image (WSI) processing. A Deep Neural Network (DNN), inspired by Bag-of-Features models is equipped with a Multiple Instance Learning (MIL) branch and trained with weak supervision for WSI classification. MIL avoids label ambiguity and enhances our model's expressive power without guiding its attention. We utilize a fine-grained logit heatmap of the models activations to interpret its decision-making pro...
»