Benutzer: Gast  Login
Titel:

Explaining Neural Networks via Perturbing Important Learned Features

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Khakzar, A.; Baselizadeh, S.; Khanduja, S.; Kim, S.T.; Navab, N.
Abstract:
Attributing the output of a neural network to the contribution of given input elements is one way of shedding light on the black box nature of neural networks. We propose a novel input feature attribution method that finds an input perturbation that maximally changes the output neuron by exclusively perturbing important hidden neurons (i.e. learned features) on the path to output neuron. Given an input, this is achieved by 1) pruning unimportant neurons, and subsequently 2) finding a local input...     »
Stichworte:
CAMP
Zeitschriftentitel:
arXiv preprint arXiv:2004.03675
Jahr:
2019
 BibTeX