Benutzer: Gast  Login

Titel:

Inferring incompressible two-phase flow fields from the interface motion using physics-informed neural networks

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Buhendwa, Aaron B.; Adami, Stefan; Adams, Nikolaus A.
Abstract:
In this work, physics-informed neural networks are applied to incompressible two-phase flow problems. We investigate the forward problem, where the governing equations are solved from initial and boundary conditions, as well as the inverse problem, where continuous velocity and pressure fields are inferred from scattered-time data on the interface position. We employ a volume of fluid approach, i.e. the auxiliary variable here is the volume fraction of the fluids within each phase. For the forwa...     »
Stichworte:
Physics-informed neural networks; Two-phase flows; Volume-of-fluid; Hidden fluid mechanics; Incompressible Navier–Stokes equations
Dewey Dezimalklassifikation:
620 Ingenieurwissenschaften
Zeitschriftentitel:
Machine Learning with Applications
Jahr:
2021
Band / Volume:
4
Seitenangaben Beitrag:
100029
Sprache:
en
Volltext / DOI:
doi:10.1016/j.mlwa.2021.100029
Verlag / Institution:
Elsevier BV
E-ISSN:
2666-8270
Eingereicht (bei Zeitschrift):
14.08.2020
Angenommen (von Zeitschrift):
10.03.2021
Publikationsdatum:
01.06.2021
TUM Einrichtung:
Lehrstuhl für Aerodynamik und Strömungsmechanik
 BibTeX