Benutzer: Gast  Login
Titel:

An Exascale Library for Numerically Inspired Machine Learning (ExaNIML)

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Poster
Autor(en):
Severin Reiz; Hasan Ashraf; Tobias Neckel; George Biros; Hans-Joachim Bungartz
Abstract:
There is a significant gap between algorithms and software in Data Analytics and those in Computational Science and Engineering (CSE) concerning their maturity on High-Performance Computing (HPC) systems. Given the fact that Data Analytics tasks show a rapidly growing share of supercomputer usage, this gap is a serious issue. ExaNIML aims to bridge this gap for a number of important tasks arising, e.g., in a Machine Learning (ML) context: density estimation, and high-dimensional approximation (...     »
Kongress- / Buchtitel:
ISC High Performance
Kongress / Zusatzinformationen:
Frankfurt (DIGITAL due corona)
Jahr:
2020
Quartal:
2. Quartal
Jahr / Monat:
2020-06
Monat:
Jun
Reviewed:
ja
Sprache:
en
WWW:
Presentation on Youtube
Hinweise:
Conference link: https://2020.isc-program.com/presentation/?id=proj119&sess=sess326
Semester:
SS 20
TUM Einrichtung:
Department of Informatics
 BibTeX