Despite the ancient discovery of the basic physical phenomenon underlying optoacoustic imaging and tomography [1], the lack of suitable laser sources, ultrasound detection technology, data acquisition, and processing capacities has long hindered the realization of efficient imaging devices. In fact, the first high-quality images from living animals were obtained about a decade ago (Figure 1), which was followed by an exponential growth of technical developments in instrumentation, algorithms, and biomedical applications surrounding this fascinating field. The ability of optoacoustics to probe optical contrast along a wide domain of penetration scales while maintaining excellent spatiotemporal resolution representative of ultrasound imaging, as shown in Figure 2, is unparalleled among the other optical imaging modalities [2], [3].
«
Despite the ancient discovery of the basic physical phenomenon underlying optoacoustic imaging and tomography [1], the lack of suitable laser sources, ultrasound detection technology, data acquisition, and processing capacities has long hindered the realization of efficient imaging devices. In fact, the first high-quality images from living animals were obtained about a decade ago (Figure 1), which was followed by an exponential growth of technical developments in instrumentation, algorithms, an...
»