In order to set up guidelines for the design of light-weighted ceilings for timber constructions to be used by engineers in practice, investigations based on both measurements and numerical models have been carried out within the cooperative research project “VibWood”. In this contribution the setup and the calibration of the numerical model of the structure as well as the prediction of radiated sound are discussed, where a special focus is set on a dimensionless description in order to deduce information for a wide range of system’s specifications. The structure, consisting of a timber slab, a floating
floor and a suspended ceiling, is built up in a Finite Element model, where the material properties of wood and the characteristics of the system (e.g.support conditions, contact phenomena dynamic properties of individual parts) are considered. The model is parameterized in order to enable computations with varying geometry and material parameters. After calibrating the FE-model with the help of measurements using model updating techniques dimensionless parameters are defined based on the Buckingham-π- Theorem and computations are carried out in order to specify guidelines for various systems. The radiation of sound is computed in a post processing using Integral Transform Methods.
«
In order to set up guidelines for the design of light-weighted ceilings for timber constructions to be used by engineers in practice, investigations based on both measurements and numerical models have been carried out within the cooperative research project “VibWood”. In this contribution the setup and the calibration of the numerical model of the structure as well as the prediction of radiated sound are discussed, where a special focus is set on a dimensionless description in order to deduce i...
»