Diese Arbeit präsentiert ein Konzept für eine Validierung maschineller Lernverfahren (ML) durch Entwurf. Die Validierung wird durch die Interpretierbarkeit in allen Schritten des ML-Verfahrens realisiert, und die Interpretierbarkeit wird durch die intrinsischen Eigenschaften von ML-Architekturen erreicht. Das Konzept wurde entwickelt, um Ereignisse so früh wie möglich aus multivariaten Zeitreihendaten vorherzusagen. Die vorgestellten Anwendungen stammen aus dem Bereich des automatisierten Fahrens, z. B. die frühzeitige Vorhersage von Fahrspurwechseln. Die Ergebnisse zeigen eine hervorragende Leistungsfähigkeit der interpretierbaren und damit leicht validierbaren ML-Algorithmen.
«
Diese Arbeit präsentiert ein Konzept für eine Validierung maschineller Lernverfahren (ML) durch Entwurf. Die Validierung wird durch die Interpretierbarkeit in allen Schritten des ML-Verfahrens realisiert, und die Interpretierbarkeit wird durch die intrinsischen Eigenschaften von ML-Architekturen erreicht. Das Konzept wurde entwickelt, um Ereignisse so früh wie möglich aus multivariaten Zeitreihendaten vorherzusagen. Die vorgestellten Anwendungen stammen aus dem Bereich des automatisierten Fahren...
»