User: Guest  Login
Original title:
Validation of Machine Learning Algorithms by Design with Applications for Automated Driving
Translated title:
Validierung Maschineller Lernverfahren durch Entwurf für Anwendungen im Automatisierten Fahren
Author:
Gallitz, Oliver Christoph
Year:
2023
Document type:
Dissertation
Faculty/School:
TUM School of Computation, Information and Technology
Advisor:
Utschick, Wolfgang (Prof. Dr.)
Referee:
Utschick, Wolfgang (Prof. Dr.); Botsch, Michael (Prof. Dr.)
Language:
en
Subject group:
DAT Datenverarbeitung, Informatik
TUM classification:
ELT 515
Abstract:
This work presents a concept to achieve validation of Machine Learning (ML) algorithms following a “by design” paradigm. The validation is realized by assuring interpretability in all steps of the ML process and the interpretability is achieved by exploiting intrinsic properties of ML architectures. The concept has been developed for the early prediction of events given multivariate time series data. The presented applications stem from the field of automated driving, e. g., early prediction of...     »
Translated abstract:
Diese Arbeit präsentiert ein Konzept für eine Validierung maschineller Lernverfahren (ML) durch Entwurf. Die Validierung wird durch die Interpretierbarkeit in allen Schritten des ML-Verfahrens realisiert, und die Interpretierbarkeit wird durch die intrinsischen Eigenschaften von ML-Architekturen erreicht. Das Konzept wurde entwickelt, um Ereignisse so früh wie möglich aus multivariaten Zeitreihendaten vorherzusagen. Die vorgestellten Anwendungen stammen aus dem Bereich des automatisierten Fahren...     »
WWW:
https://mediatum.ub.tum.de/?id=1660429
Date of submission:
09.06.2022
Oral examination:
24.01.2023
File size:
2063217 bytes
Pages:
108
Urn (citeable URL):
https://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20230124-1660429-1-4
Last change:
06.03.2023
 BibTeX