User: Guest  Login
Original title:
Interpretable models of gene expression in single-cell immunology
Translated title:
Interpretierbare Modelle beschreiben Genexpression in Einzelzellimmunologie
Author:
Fischer, David Sebastian
Year:
2022
Document type:
Dissertation
Faculty/School:
TUM School of Life Sciences
Advisor:
Theis, Fabian (Prof. Dr. Dr.)
Referee:
Theis, Fabian (Prof. Dr. Dr.); Yosef, Nir (Prof., Ph.D.); Stegle, Oliver (Prof. Dr.)
Language:
en
Subject group:
BIO Biowissenschaften
TUM classification:
BIO 110; MAT 022
Abstract:
Single-cell omics assays provide molecular characterisations of cells. Immunology has stood out as a key application of these assays and molecular states of immune cell have been described in detail. However, mechanistic insights into diseases are often still incomplete. I addressed this limitation using interpretable machine learning models for single-cell immunology in population dynamics, antigen recognition, spatial data, sample and epigenetic variation, and automated analyses.
Translated abstract:
In Einzelzell-Omics wird der molekularen Zustand von Zellen gemessen. Dies Methoden haben in Immunologie detaillierte Beschreibungen von Immunzellen hervorgebracht. Trotz diese Datenfülle gibt es viele offene Fragen zu Krankheitsmechanismen. Mit Bezug auf diese Fragen habe ich interpretierbaren Modellen des maschinellen Lernens in Populationsdynamik, Antigenerkennung, räumlichen Abhängigkeiten von Zellen, epigenetischer und experimenteller Variation, und in automatisierten Analysen entwickelt.
WWW:
https://mediatum.ub.tum.de/?id=1634060
Date of submission:
29.11.2021
Oral examination:
19.07.2022
File size:
4233920 bytes
Pages:
58
Urn (citeable URL):
https://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20220719-1634060-1-1
Last change:
31.05.2023
 BibTeX