Our understanding of the molecular mechanisms that link inflammation and cancer has significantly increased in recent years. Here, we analyse genetic evidence indicating that the transcription factors nuclear factor-kappaB (NF-kappaB) and signal transducer and activator of transcription 3 (STAT3) have a central role in this context by regulating distinct functions in cancer cells and surrounding non-tumorigenic cells. In immune cells, NF-kappaB induces the transcription of genes that encode pro-inflammatory cytokines, which can act in a paracrine manner on initiated cells. By contrast, in tumorigenic cells, both NF-kappaB and STAT3 control apoptosis, and STAT3 can also enhance proliferation. Consequently, inflammation should be considered as a valuable target for cancer prevention and therapy.
«
Our understanding of the molecular mechanisms that link inflammation and cancer has significantly increased in recent years. Here, we analyse genetic evidence indicating that the transcription factors nuclear factor-kappaB (NF-kappaB) and signal transducer and activator of transcription 3 (STAT3) have a central role in this context by regulating distinct functions in cancer cells and surrounding non-tumorigenic cells. In immune cells, NF-kappaB induces the transcription of genes that encode pro-...
»