Differences in breast volume and contour are subjectively estimated by surgeons. 3D surface imaging using 3D scanners provides objective breast volume quantification, but precision and accuracy of the method requires verification. Breast volumes of five test individuals were assessed using a 3D surface scanner. Magnetic resonance imaging (MRI) reference volumes were obtained to verify and compare the 3D scan measurements. The anatomical thorax wall curvature was segmented using MRI data and compared to the interpolated curvature of the posterior breast volume delimitation of 3D scan data. MRI showed higher measurement precision, mean deviation (expressed as percentage of volume) of 1.10+/-0.34% compared to 1.63+/-0.53% for the 3D scanner. Mean MRI [right (left) breasts: 638 (629)+/-143 (138) cc] and 3D scan [right (left) breasts: 493 (497)+/-112 (116) cc] breast volumes significantly correlated [right (left) breasts: r=0.982 (0.977), p=0.003 (0.004)]. The posterior thorax wall of the 3D scan model showed high agreement with the MRI thorax wall curvature [mean positive (negative) deviation: 0.33 (-0.17)+/-0.37 cm]. High correspondence and correlation of 3D scan data with MRI-based verifications support 3D surface imaging as sufficiently precise and accurate for breast volume measurements.
«
Differences in breast volume and contour are subjectively estimated by surgeons. 3D surface imaging using 3D scanners provides objective breast volume quantification, but precision and accuracy of the method requires verification. Breast volumes of five test individuals were assessed using a 3D surface scanner. Magnetic resonance imaging (MRI) reference volumes were obtained to verify and compare the 3D scan measurements. The anatomical thorax wall curvature was segmented using MRI data and comp...
»