The human epidermal growth factor receptor 2 (HER2) has been targeted as a breast cancer-associated Ag by T cell-based immunotherapeutical strategies such as cancer vaccines and adoptive T cell transfer. The prerequisite for a successful T cell-based therapy is the induction of T cells capable of recognizing the HER2-expressing tumor cells. In this study, we generated human cytotoxic T cell clones directed against the HER2(369-377) epitope known to be naturally presented with HLA-A*0201. Those HER2-reactive CTLs, which were also tumor lytic, exhibited a similar lysis pattern dividing the targets in lysable and nonlysable tumor cells. Several HER2-expressing tumor cells became susceptible to CTL-mediated lysis after IFN-gamma treatment and, in parallel, up-regulated molecules of the Ag-presenting machinery, indicating that the tumor itself also contributes to the success of CTL-mediated killing. Some of the HER2(369-377)-reactive T cells specifically cross-reacted with the corresponding peptides derived from the family members HER3 and/or HER4 due to a high sequence homology. The epitopes HER3(356-364) and HER4(361-369) were endogenously processed and contributed to the susceptibility of cell lysis by HER cross-reacting CTLs. The principle of "double" or "triple targeting" the HER Ags by cross-reacting T cells will impact the further development of T cell-based therapies.
«
The human epidermal growth factor receptor 2 (HER2) has been targeted as a breast cancer-associated Ag by T cell-based immunotherapeutical strategies such as cancer vaccines and adoptive T cell transfer. The prerequisite for a successful T cell-based therapy is the induction of T cells capable of recognizing the HER2-expressing tumor cells. In this study, we generated human cytotoxic T cell clones directed against the HER2(369-377) epitope known to be naturally presented with HLA-A*0201. Those H...
»