Benutzer: Gast  Login
Titel:

Machine Learning-based Prognostic Subgrouping of Glioblastoma: A Multi-center Study.

Dokumenttyp:
Journal Article
Autor(en):
Akbari, Hamed; Bakas, Spyridon; Sako, Chiharu; Fathi Kazerooni, Anahita; Villanueva-Meyer, Javier; Garcia, Jose A; Mamourian, Elizabeth; Liu, Fang; Cao, Quy; Shinohara, Russell T; Baid, Ujjwal; Getka, Alexander; Pati, Sarthak; Singh, Ashish; Calabrese, Evan; Chang, Susan; Rudie, Jeffrey; Sotiras, Aristeidis; LaMontagne, Pamela; Marcus, Daniel S; Milchenko, Mikhail; Nazeri, Arash; Balana, Carmen; Capellades, Jaume; Puig, Josep; Badve, Chaitra; Barnholtz-Sloan, Jill S; Sloan, Andrew E; Vadmal, Vac...     »
Abstract:
BACKGROUND: Glioblastoma is the most aggressive adult primary brain cancer, characterized by significant heterogeneity, posing challenges for patient management, treatment planning, and clinical trial stratification. METHODS: We developed a highly reproducible, personalized prognostication and clinical subgrouping system using machine learning (ML) on routine clinical data, MRI, and molecular measures from 2,838 demographically diverse patients across 22 institutions and 3 continents. Patients were stratified into favorable, intermediate, and poor prognostic subgroups (I, II, III) using Kaplan-Meier analysis (Cox proportional model and hazard ratios [HR]). RESULTS: The ML model stratified patients into distinct prognostic subgroups with HRs between subgroups I-II and I-III of 1.62 (95%CI: 1.43-1.84, p<0.001) and 3.48 (95%CI: 2.94-4.11, p<0.001), respectively. Analysis of imaging features revealed several tumor properties contributing unique prognostic value, supporting the feasibility of a generalizable prognostic classification system in a diverse cohort. CONCLUSIONS: Our ML model demonstrates extensive reproducibility and online accessibility, utilizing routine imaging data rather than complex imaging protocols. This platform offers a unique approach for personalized patient management and clinical trial stratification in glioblastoma.
Zeitschriftentitel:
Neuro-oncol
Jahr:
2024
Volltext / DOI:
doi:10.1093/neuonc/noae260
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/39665363
Print-ISSN:
1522-8517
TUM Einrichtung:
Professur für AI for Image-Guided Diagnosis and Therapy (Prof. Wiestler); Professur für Neuroradiologie (Prof. Zimmer)
 BibTeX