Benutzer: Gast  Login
Mehr Felder
Einfache Suche
Titel:

Pretrained Deep 2.5D Models for Efficient Predictive Modeling from Retinal OCT: A PINNACLE Study Report

Dokumenttyp:
Proceedings Paper
Autor(en):
Emre, Taha; Oghbaie, Marzieh; Chakravarty, Arunava; Rivail, Antoine; Riedl, Sophie; Mai, Julia; Scholl, Hendrik P. N.; Sivaprasad, Sobha; Rueckert, Daniel; Lotery, Andrew; Schmidt-Erfurth, Ursula; Bogunovic, Hrvoje
Abstract:
In the field of medical imaging, 3D deep learning models play a crucial role in building powerful predictive models of disease progression. However, the size of these models presents significant challenges, both in terms of computational resources and data requirements. Moreover, achieving high-quality pretraining of 3D models proves to be even more challenging. To address these issues, hybrid 2.5D approaches provide an effective solution for utilizing 3D volumetric data efficiently using 2D mod...     »
Zeitschriftentitel:
Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv
Jahr:
2023
Band / Volume:
14096
Seitenangaben Beitrag:
132-141
Volltext / DOI:
doi:10.1007/978-3-031-44013-7_14
Print-ISSN:
0302-9743
TUM Einrichtung:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX