Benutzer: Gast  Login
Mehr Felder
Einfache Suche
Titel:

Pixel-Level Explanation of Multiple Instance Learning Models in Biomedical Single Cell Images

Dokumenttyp:
Proceedings Paper
Autor(en):
Sadafi, Ario; Adonkina, Oleksandra; Khakzar, Ashkan; Lienemann, Peter; Hehr, Rudolf Matthias; Rueckert, Daniel; Navab, Nassir; Marr, Carsten
Abstract:
Explainability is a key requirement for computer-aided diagnosis systems in clinical decision-making. Multiple instance learning with attention pooling provides instance-level explainability, however for many clinical applications a deeper, pixel-level explanation is desirable, but missing so far. In this work, we investigate the use of four attribution methods to explain a multiple instance learning models: GradCAM, Layer-Wise Relevance Propagation (LRP), Information Bottleneck Attribution (IBA...     »
Zeitschriftentitel:
Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv
Jahr:
2023
Band / Volume:
13939
Seitenangaben Beitrag:
170-182
Volltext / DOI:
doi:10.1007/978-3-031-34048-2_14
Print-ISSN:
0302-9743
TUM Einrichtung:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX