User: Guest  Login
Title:

Pretrained Deep 2.5D Models for Efficient Predictive Modeling from Retinal OCT: A PINNACLE Study Report

Document type:
Proceedings Paper
Author(s):
Emre, Taha; Oghbaie, Marzieh; Chakravarty, Arunava; Rivail, Antoine; Riedl, Sophie; Mai, Julia; Scholl, Hendrik P. N.; Sivaprasad, Sobha; Rueckert, Daniel; Lotery, Andrew; Schmidt-Erfurth, Ursula; Bogunovic, Hrvoje
Abstract:
In the field of medical imaging, 3D deep learning models play a crucial role in building powerful predictive models of disease progression. However, the size of these models presents significant challenges, both in terms of computational resources and data requirements. Moreover, achieving high-quality pretraining of 3D models proves to be even more challenging. To address these issues, hybrid 2.5D approaches provide an effective solution for utilizing 3D volumetric data efficiently using 2D mod...     »
Journal title abbreviation:
Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv
Year:
2023
Journal volume:
14096
Pages contribution:
132-141
Fulltext / DOI:
doi:10.1007/978-3-031-44013-7_14
Print-ISSN:
0302-9743
TUM Institution:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX