Benutzer: Gast  Login
Weniger Felder
Einfache Suche
Titel:

Structure Learning for Cyclic Linear Causal Models

Dokumenttyp:
Zeitungsartikel
Autor(en):
Amendola, C., Dettling, P., Drton, M., Onori,F.; Wu, J.
Abstract:
We consider the problem of structure learning for linear causal models based on observational data. We treat models given by possibly cyclic mixed graphs, which allow for feed-back loops and effects of latent confounders. Generalizing related work on bow-free acyclic graphs, we assume that the underlying graph is simple. This entails that any two observed variables can be related through at most one direct causal effect and that (confounding-induced) correlation between error terms in structural...     »
Dewey Dezimalklassifikation:
510 Mathematik
Kongresstitel:
36th Conference on Uncertainty in Artificial Intelligence (UAI)
Zeitschriftentitel:
Proceedings of Machine Learning Research (PMLR)
Jahr:
2020
Band / Volume:
124
Jahr / Monat:
2020-08
Quartal:
3. Quartal
Monat:
Aug
Seitenangaben Beitrag:
999-1008
Sprache:
en
WWW:
Structure Learning for Cyclic Linear Causal Models
Print-ISSN:
2640-3498
Publikationsdatum:
03.08.2020
TUM Einrichtung:
Lehrstuhl für Mathematische Statistik
Format:
Text
 BibTeX