We consider the problem of estimating stochastic volatility for a class of second-order parabolic stochastic PDEs. Assuming that the solution is observed at a high temporal frequency, we use limit theorems for multipower variations and related functionals to construct consistent nonparametric estimators and asymptotic confidence bounds for the integrated volatility process. As a byproduct of our analysis, we also obtain feasible estimators for the regularity of the spatial covariance function of the noise.
«
We consider the problem of estimating stochastic volatility for a class of second-order parabolic stochastic PDEs. Assuming that the solution is observed at a high temporal frequency, we use limit theorems for multipower variations and related functionals to construct consistent nonparametric estimators and asymptotic confidence bounds for the integrated volatility process. As a byproduct of our analysis, we also obtain feasible estimators for the regularity of the spatial covariance function of...
»