Benutzer: Gast  Login
Titel:

Scenario Understanding and Motion Prediction for Autonomous Vehicles - Review and Comparison

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Karle, Phillip; Geisslinger, Maximilian; Betz, Johannes; Lienkamp, Markus
Abstract:
Scenario understanding and motion prediction are essential components for completely replacing human drivers and for enabling highly and fully automated driving (SAE-Level 4/5). In deeply stochastic and uncertain traffic scenarios, autonomous driving software must act beyond existing traffic rules and must predict critical situations in advance to provide safe and comfortable rides. In addition, comprehensive prediction models intend not just to reproduce, but rather to encode the human driver b...     »
Stichworte:
FTM Fahrdynamik
Zeitschriftentitel:
IEEE Transactions on Intelligent Transportation Systems
Jahr:
2022
Seitenangaben Beitrag:
1-21
Nachgewiesen in:
Scopus
Volltext / DOI:
doi:10.1109/tits.2022.3156011
Verlag / Institution:
Institute of Electrical and Electronics Engineers (IEEE)
E-ISSN:
1524-90501558-0016
Publikationsdatum:
01.01.2022
TUM Einrichtung:
Lehrstuhl für Fahrzeugtechnik
 BibTeX