In der vorliegenden Arbeit werden nichtlineare Modellreduktionsverfahren basierend auf Neuro-Fuzzy-Ansätzen entwickelt, um bewegungsinduzierte instationäre aerodynamische Lasten effizient vorherzusagen. Die Zeitbereichsmodelle reproduzieren die wesentliche Dynamik des zugrundeliegenden CFD-Systems und sind in der Lage, das Flugverhalten bei unterschiedlichen Anströmbedingungen, ausgeprägten Stoßwanderungen und Strukturschwingungen zu modellieren. Dadurch wird eine erhebliche Effizienzsteigerung für multidisziplinäre Analysen erreicht.
«
In der vorliegenden Arbeit werden nichtlineare Modellreduktionsverfahren basierend auf Neuro-Fuzzy-Ansätzen entwickelt, um bewegungsinduzierte instationäre aerodynamische Lasten effizient vorherzusagen. Die Zeitbereichsmodelle reproduzieren die wesentliche Dynamik des zugrundeliegenden CFD-Systems und sind in der Lage, das Flugverhalten bei unterschiedlichen Anströmbedingungen, ausgeprägten Stoßwanderungen und Strukturschwingungen zu modellieren. Dadurch wird eine erhebliche Effizienzsteigerung...
»