In this thesis, different types of stereo matching algorithms for event-based vision sensors are developed and analysed. The algorithms are based on a) single-event matching, b) event-cloud alignment and c) feature extraction and matching. Analysis focusses on both accuracy as well as computational cost and suitability for real-time usage, and compares the results of the proposed methods with values published in current literature.
Translated abstract:
Diese Dissertation befasst sich mit der Entwicklung und Analyse von Algorithmen für ereignisbasiertes, stereoskopisches, maschinelles Sehen. Die Algorithmen basieren auf a) Einzelereignisabgleich, b) Ereigniswolkenangleichen und c) Merkmalidentifikation und -zuordnung. Die Auswertung konzentriert sich sowohl auf Genauigkeit der Tiefenschätzung als auch auf Eignung der jeweiligen Algorithmen für Echtzeitanwendungsfälle. Die Ergebnisse werden mit Werten in der Literatur verglichen.