This dissertation presents a novel potential-based machine-learning method that can simulate drift-wave turbulence in fusion plasmas efficiently and precisely without explicitly resolving the critical inertial range. By using a neural network within a large eddy simulation framework, the method allows for reducing the Hasegawa-Wakatani model by 256x in space, while preserving the physical properties on average, spectrally, and statistically through retaining their statistical distributions closely.
«
This dissertation presents a novel potential-based machine-learning method that can simulate drift-wave turbulence in fusion plasmas efficiently and precisely without explicitly resolving the critical inertial range. By using a neural network within a large eddy simulation framework, the method allows for reducing the Hasegawa-Wakatani model by 256x in space, while preserving the physical properties on average, spectrally, and statistically through retaining their statistical distributions close...
»
Übersetzte Kurzfassung:
Diese Dissertation präsentiert eine neue potenzialbasierte ML Methode, die Driftwellen-Turbulenzen in Fusionsplasmen effizient und präzise simulieren kann, ohne den kritischen Inertialbereich explizit aufzulösen. Durch den Einsatz eines Neuronalen Netzwerks im Rahmen von Large-Eddy-Simulationen ermöglicht die Methode eine 256x räumliche Reduzierung des Hasegawa-Wakatani-Modells und bewahrt dabei durchschnittlich, spektral und statistisch die physikalischen Eigenschaften des turbulenten Systems.