Hashing ist eine Methode zur laufzeit-effizienten Nearest-Neighbor- Suche, bei der man die Daten in einer Bitsequenz kodiert, so dass die Suche im Kodierungsraum effizient und präzise durchgeführt werden kann. Diese Dissertation untersucht Aspekte des code-konsistenten Trainings von Hashing Forests und Deep-Learning-Modellen für das end-to-end learning von Hashwerten und zeigt, dass diese Hashing-Modelle dazu genutzt werden können, effizientes und präzises inhaltsbasiertes Image Retrieval für medizinische Anwendungen in großem Maßstab durchzuführen.
«
Hashing ist eine Methode zur laufzeit-effizienten Nearest-Neighbor- Suche, bei der man die Daten in einer Bitsequenz kodiert, so dass die Suche im Kodierungsraum effizient und präzise durchgeführt werden kann. Diese Dissertation untersucht Aspekte des code-konsistenten Trainings von Hashing Forests und Deep-Learning-Modellen für das end-to-end learning von Hashwerten und zeigt, dass diese Hashing-Modelle dazu genutzt werden können, effizientes und präzises inhaltsbasiertes Image Retrieval für me...
»