Variationsmethoden sind ein etablierter Ansatz zur Lösung praktischer Probleme im maschinellen Sehen. Basierend auf einem Multilabeling-Verfahren, welches nicht-ganzzahligen Zuständen sinnvolle Kosten zuweist, schlagen wir eine effiziente konvexe Formulierung für nicht-konvexe Variationsprobleme vor. Wir zeigen, dass sich dieser Ansatz auch durch die Approximation eines Dualproblems mittels finiten Elementen herleiten lässt. Schließlich stellen wir eine konvexe Formulierung für vektorwertige Variationsprobleme vor und zeigen, dass die dafür eingeführten Begriffe aus der geometrischen Maßtheorie auch Anwendungen im Bereich des maschinellen Lernens finden.
«
Variationsmethoden sind ein etablierter Ansatz zur Lösung praktischer Probleme im maschinellen Sehen. Basierend auf einem Multilabeling-Verfahren, welches nicht-ganzzahligen Zuständen sinnvolle Kosten zuweist, schlagen wir eine effiziente konvexe Formulierung für nicht-konvexe Variationsprobleme vor. Wir zeigen, dass sich dieser Ansatz auch durch die Approximation eines Dualproblems mittels finiten Elementen herleiten lässt. Schließlich stellen wir eine konvexe Formulierung für vektorwertige Var...
»