The midbrain-hindbrain domain (MH) is an important region of the vertebrate embryonic brain. Indeed, in contrast to other brain domains, it is not formed by segmentation processes, but responds to an organizer activity located at the midbrain-hindbrain boundary (MHB). Thus it is of great interest to understand the factors and mechanisms underlying MH formation. The present work uses the zebrafish system to add important information on the poorly understood steps of early MH development. These results are summarized below: (i) It is known that MH development is regulated by planar information, however the upstream factors regulating the expression of the known MH markers her5, pax2.1, wnt1 and fgf8 are not known. We identified the zebrafish Btd-related factor Bts1 as a specific regulator of pax2.1 and its dependent genetic cascade (pax5, eng3). Because of the crucial function of Bts1 in MH induction, we analysed the regulation of its own expression. We demonstrate that the induction of bts1 expression likely depends on FGF and Wnt signaling. Thus, we identified one cascade of MH induction through planar signaling. (ii) Anterior neural plate development is thought to respond to vertical signaling. So far, the precise role of vertical signals in MH development remains unclear. Using a combination of experimental manipulations in mutant lines affected in non-neural tissues, we unravelled the inhibitory influence of a long-range signal, emanating from the prechordal plate, on the refinement of a neural cluster at the forebrain-midbrain boundary. These results give evidence that vertical signals have a precise role in MH development. (iii) The earliest gene selectively expressed in the prospective MH is her5. Using a reporter approach in zebrafish transgenics, we identified her5 regulatory elements. Further, the PACher::egfp transgenic line allows tracing cells of the entire presumptive MH from MH induction onwards. Using this transgenic line in mutant contexts, we demonstrate that in the absence of functional Pax2.1 or FGF8, MH cells partially acquire the fate of neighbouring brain regions, to a different extent depending on the mutant context. Together, these results identify the genomic sequence responding to MH induction factors, and permit to assess the role of early MH factors (such as Fgf8 and Pax2.1) on cell fate. (iv) We identified a novel Hairy/E(spl) factor, called Him, positioned in an unusual head-tohead orientation close to Her5 genomic locus. Preliminary functional analyses suggest that Him loss-of-function leads, similar to a lack of Her5 function, to a premature differentiation in the normally neuron-free intervening zone at the presumptive MHB. Together these results identify a new factor, and potential partner for Her5, during the MH induction phase.
«
The midbrain-hindbrain domain (MH) is an important region of the vertebrate embryonic brain. Indeed, in contrast to other brain domains, it is not formed by segmentation processes, but responds to an organizer activity located at the midbrain-hindbrain boundary (MHB). Thus it is of great interest to understand the factors and mechanisms underlying MH formation. The present work uses the zebrafish system to add important information on the poorly understood steps of early MH development. These re...
»