The thesis deals with automatic interpretation of naturally spoken utterances for limited-domain applications. Specifically, the problem is examined by means of a dialogue system for an airport information application. In contrast to traditional two-stage systems, speech recognition and semantic processing are tightly coupled. This avoids interpretation errors due to early decisions. The presented one-stage decoding approach utilizes a uniform, stochastic knowledge representation based on weighted transition network hierarchies, which describe phonemes, words, word classes and semantic concepts. A robust semantic model, which is estimated by combination of data-driven and rule-based approaches, is part of this representation. The investigation of this hierarchical language model is the focus of this work. Furthermore, methods for modeling out-of-vocabulary words and for evaluating semantic trees are introduced.
«
The thesis deals with automatic interpretation of naturally spoken utterances for limited-domain applications. Specifically, the problem is examined by means of a dialogue system for an airport information application. In contrast to traditional two-stage systems, speech recognition and semantic processing are tightly coupled. This avoids interpretation errors due to early decisions. The presented one-stage decoding approach utilizes a uniform, stochastic knowledge representation based on weight...
»