User: Guest  Login
Title:

Deep learning for autosegmentation for radiotherapy treatment planning: State-of-the-art and novel perspectives.

Document type:
Journal Article; Review
Author(s):
Erdur, Ayhan Can; Rusche, Daniel; Scholz, Daniel; Kiechle, Johannes; Fischer, Stefan; Llorián-Salvador, Óscar; Buchner, Josef A; Nguyen, Mai Q; Etzel, Lucas; Weidner, Jonas; Metz, Marie-Christin; Wiestler, Benedikt; Schnabel, Julia; Rueckert, Daniel; Combs, Stephanie E; Peeken, Jan C
Abstract:
The rapid development of artificial intelligence (AI) has gained importance, with many tools already entering our daily lives. The medical field of radiation oncology is also subject to this development, with AI entering all steps of the patient journey. In this review article, we summarize contemporary AI techniques and explore the clinical applications of AI-based automated segmentation models in radiotherapy planning, focusing on delineation of organs at risk (OARs), the gross tumor volume (G...     »
Journal title abbreviation:
Strahlenther Onkol
Year:
2025
Journal volume:
201
Journal issue:
3
Pages contribution:
236-254
Fulltext / DOI:
doi:10.1007/s00066-024-02262-2
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/39105745
Print-ISSN:
0179-7158
TUM Institution:
Institut für KI und Informatik in der Medizin (Prof. Rückert); Klinik und Poliklinik für RadioOnkologie und Strahlentherapie (Prof. Combs); Professur für AI for Image-Guided Diagnosis and Therapy (Prof. Wiestler); Professur für Neuroradiologie (Prof. Zimmer)
 BibTeX
Occurrences: