User: Guest  Login
Title:

The Brain Tumor Segmentation - Metastases (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI.

Document type:
Journal Article; Preprint
Author(s):
Moawad, Ahmed W; Janas, Anastasia; Baid, Ujjwal; Ramakrishnan, Divya; Saluja, Rachit; Ashraf, Nader; Maleki, Nazanin; Jekel, Leon; Yordanov, Nikolay; Fehringer, Pascal; Gkampenis, Athanasios; Amiruddin, Raisa; Manteghinejad, Amirreza; Adewole, Maruf; Albrecht, Jake; Anazodo, Udunna; Aneja, Sanjay; Anwar, Syed Muhammad; Bergquist, Timothy; Chiang, Veronica; Chung, Verena; Conte, Gian Marco; Dako, Farouk; Eddy, James; Ezhov, Ivan; Khalili, Nastaran; Farahani, Keyvan; Iglesias, Juan Eugenio; Jiang,...     »
Abstract:
The translation of AI-generated brain metastases (BM) segmentation into clinical practice relies heavily on diverse, high-quality annotated medical imaging datasets. The BraTS-METS 2023 challenge has gained momentum for testing and benchmarking algorithms using rigorously annotated internationally compiled real-world datasets. This study presents the results of the segmentation challenge and characterizes the challenging cases that impacted the performance of the winning algorithms. Untreated br...     »
Journal title abbreviation:
ArXiv
Year:
2024
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/37396600
TUM Institution:
Professur für AI for Image-Guided Diagnosis and Therapy (Prof. Wiestler); Professur für Neuroradiologie (Prof. Zimmer)
 BibTeX