User: Guest  Login
Title:

Personalized predictions of Glioblastoma infiltration: Mathematical models, Physics-Informed Neural Networks and multimodal scans.

Document type:
Journal Article
Author(s):
Zhang, Ray Zirui; Ezhov, Ivan; Balcerak, Michal; Zhu, Andy; Wiestler, Benedikt; Menze, Bjoern; Lowengrub, John S
Abstract:
Predicting the infiltration of Glioblastoma (GBM) from medical MRI scans is crucial for understanding tumor growth dynamics and designing personalized radiotherapy treatment plans. Mathematical models of GBM growth can complement the data in the prediction of spatial distributions of tumor cells. However, this requires estimating patient-specific parameters of the model from clinical data, which is a challenging inverse problem due to limited temporal data and the limited time between imaging an...     »
Journal title abbreviation:
Med Image Anal
Year:
2024
Journal volume:
101
Fulltext / DOI:
doi:10.1016/j.media.2024.103423
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/39700844
Print-ISSN:
1361-8415
TUM Institution:
Professur für AI for Image-Guided Diagnosis and Therapy (Prof. Wiestler); Professur für Neuroradiologie (Prof. Zimmer)
 BibTeX